This document will walk you through the installation of what is known as a "LAMP" system: Linux, Apache, MySQL and PHP. Depending on who you talk to, the P also stands for Perl or Python, but in general, it is assumed to be PHP. I run CentOS on my servers; this HOWTO was written targetting CentOS/Red Hat/Fedora. I have had requests for SuSE- and Debian-specific versions as well, so I will work on those in the future (donations might help speed that process up!). The main difference between the distributions is in the paths to the startup scripts. Red Hat systems used /etc/rc.d/init.d and SuSE uses /etc/init.d.

This document is different from my LAMP howto because we're going to add SSL and mod_perl support to Apache. SSL is important for ecommerce, or really any web transactions you want to encrypt. mod_perl is used as a faster, better way to add Perl support to your website than traditional CGIs, which require the entire Perl interpreter to be loaded each time. mod_perl puts a complete Perl interpreter right inside Apache!

I designed this document so you can just copy/paste each line or block of commands into your shell session and it will "just work" for you. This avoids tedious typing, and the inevitable typos or missed steps that result. These commands work properly via copy/paste. If you are having problems and you are not using copy/paste, please re-check your typing before sending me an email saying "It doesn't work."

Text in a "command" box like this one is a literal Linux commandline, and should be typed or pasted exactly as written.

One note: many many people have followed these directions as written, and have not had any problems. If you are having a problem, chances are it's something you are doing (or not doing), something different about your computer, etc. It is probably NOT this procedure. :)

Initial Steps

PLEASE BE AWARE THAT A SOURCE-BASED INSTALLATION LIKE THIS ONE IS NOT NEEDED FOR A BASIC LAMP SERVER! You should only be doing a source-based installation if you need to alter fundamental settings in one or more components of the LAMP stack (e.g., you need a feature in PHP that isn't in the default RPM). If you are just getting started with LAMP, use the binaries provided by your distribution - it is much simpler, and a lot easier to upgrade later.

Most out-of-the-box Red Hat Linux installations will have one or more of the LAMP components installed via RPM files. I personally prefer installing things like this from source, so I get the most control over what's compiled in, what's left out, etc. But source code installs can wreak havoc if overlaid on top of RPM installs, as the two most likely won't share the same directories, etc.

If you have not yet installed your Linux OS, or just for future reference, do not choose to install Apache, PHP, or MySQL during the system installation. Then you can immediately proceed with the source-based install listed here.

Note: to install applications from source code, you will need a C++ compiler (gcc) installed. This is generally taken care of, but I've had enough queries about it that I've added this note to avoid getting more! You should use your distribution's install CDs to get the proper version of the compiler. Or, if you are using an RPM based distro, you can use a site like http://www.rpmfind.net/ to locate the correct RPM version for your system. (You will obviously not be able to use/rebuild a source RPM to get the compiler installed, as you need the compiler to build the final binary RPM!) On a Fedora system, you can issue this command:

su - root
yum install gcc gcc-c++

Log in as root

Because we will be installing software to directories that "regular" users don't have write access to, and also possibly uninstalling RPM versions of some applications, we'll log in as root. The only steps that needroot access are the actual installation steps, but by doing the configure and make steps as root, the source code will also be inaccessible to "regular" users.

If you do not have direct access (via keyboard) to the server, PLEASE use Secure Shell (SSH) to access the server and not telnet!! Whenever you use telnet (or plain FTP for that matter), you are transmitting your username, password, and all session information in "plain text". This means that anyone who can access a machine someplace between your PC and your server can snoop your session and get your info. Use encryption wherever possible!

Remove RPM Versions of the Applications

Before we start with our source code install, we need to remove any/all existing RPM files for the LAMP applications. To find out what RPMs are already installed, use the RPM query command:

rpm -qa

in conjunction with grep to filter your results:

rpm -qa | grep -i apache
rpm -qa | grep -i httpd
rpm -qa | grep -i php
rpm -qa | grep -i mysql
rpm -qa | grep -i openssl
rpm -qa | grep -i mod_ssl
rpm -qa | grep -i mod_perl

The 'httpd' search is in case you have Apache2 installed via RPM.

To remove the RPMs generated by these commands, do

rpm -e filename

for each RPM you found in the query. If you have any content in your MySQL database already, the RPM removal step should not delete the database files. When you reinstall MySQL, you should be able to move all those files to your new MySQL data directory and have access to it all again.

RPM may complain when you try to uninstall OpenSSL, as many other installed applications probably depend on it. If so, go ahead and leave it in. We will be installing it to a different location than the RPM default install, so you'll end up with two separate versions of OpenSSL on the server. Not really a big deal. And we'll be using the "new" one in our steps by explicitly naming the directory when it's needed.

Get the Source Code for all Applications

We want to put all our source code someplace central, so it's not getting mixed up in someone's home directory, etc.

cd /usr/local/src

One way application source code is distributed is in what are known as "tarballs." The tar command is usually associated with making tape backups - tar stands for Tape ARchive. It's also a handy way to pack up multiple files for easy distribution. Use the man tar command to learn more about how to use this very flexible tool.

Here are the versions of all the components we'll use:

MySQL - 4.1.22
Apache - 1.3.37
mod_ssl - 2.8.28-1.3.37
OpenSSL - 0.9.8a
mod_perl - 1.29
PHP - 4.4.6

Please note: these are the only versions of these that I have verified these steps against. If you use
another version of any component, especially a newer version, this HOWTO may not be accurate.

wget www.php.net/distributions/php-4.4.6.tar.gz

wget www.php.net/distributions/php-4.4.6.tar.gz
wget apache.oregonstate.edu/httpd/apache_1.3.37.tar.gz
wget www.modssl.org/source/mod_ssl-2.8.28-1.3.37.tar.gz
wget www.openssl.org/source/openssl-0.9.8a.tar.gz
wget perl.apache.org/dist/mod_perl-1.29.tar.gz

There may be an Apache mirror closer to you - check their mirror page for other sources. Then insert the URL you get in place of the above for the wget command.

For MySQL, go to http://www.mysql.com/ and choose an appropriate mirror to download from.

Unpack the Source Code

tar zxf php-4.4.6.tar.gz
tar zxf apache_1.3.37.tar.gz
tar zxf mysql-4.1.22.tar.gz
tar zxf mod_ssl-2.8.28-1.3.37.tar.gz
tar zxf openssl-0.9.8a.tar.gz
tar zxf mod_perl-1.29.tar.gz

This should leave you with the following directories:

/usr/local/src/php-4.4.6
/usr/local/src/apache_1.3.37
/usr/local/src/mysql-4.1.22
/usr/local/src/openssl-0.9.8a
/usr/local/src/mod_ssl-2.8.28-1.3.37
/usr/local/src/mod_perl-1.29

Build and Install MySQL

First, we create the group and user that "owns" MySQL. For security purposes, we don't want MySQL running as root on the system. To be able to easily identify MySQL processes in top or a ps list, we'll make a user and group named mysql:

groupadd mysql
useradd -g mysql -c "MySQL Server" mysql

If you get any messages about the group or user already existing, that's fine. The goal is just to make sure we have them on the system.

What the useradd command is doing is creating a user mysql in the group mysql with the "name" of MySQL Server. This way when it's showed in various user and process watching apps, you'll be able to tell what it is right away.

Now we'll change to the "working" directory where the source code is, change the file 'ownership' for the source tree (this prevents build issues in reported in some cases where the packager's username was included on the source and you aren't using the exact same name to compile with!) and start building.

The configure command has many options you can specify. I have listed some fairly common ones; if you'd like to see others, do:

./configure --help | less

to see them all. Read the documentation on the MySQL website for a more detailed explanation of each option.

cd /usr/local/src/mysql-4.1.22

chown -R root.root *

make clean

./configure \
--prefix=/usr/local/mysql \
--localstatedir=/usr/local/mysql/data \
--disable-maintainer-mode \
--with-mysqld-user=mysql \
--with-unix-socket-path=/tmp/mysql.sock \
--without-comment \
--without-debug \
--without-bench

18-Jul-2005: If you are installing MySQL 4.0.x on Fedora Core 4, there is a problem with LinuxThreads that prevents MySQL from compiling properly. Installing on Fedora Core 3 works fine though. Thanks to Kevin Spencer for bringing this to my attention. There is a workaround listed at http://bugs.mysql.com/bug.php?id=9497. Thanks to Collin Campbell for that link. Another solution can be found at http://bugs.mysql.com/bug.php?id=2173. Thanks to Kaloyan Raev for that one.

Now comes the long part, where the source code is actually compiled and then installed. Plan to get some coffee or take a break while this step runs. It could be 10-15 minutes or more, depending on your system's free memory, load average, etc.

make && make install

Configure MySQL

MySQL is "installed" but we have a few more steps until it's actually "done" and ready to start. First run the script which actually sets up MySQL's internal database (named, oddly enough, mysql).

./scripts/mysql_install_db

Then we want to set the proper ownership for the MySQL directories and data files, so that only MySQL (and root) can do anything with them.

chown -R root:mysql /usr/local/mysql
chown -R mysql:mysql /usr/local/mysql/data

Copy the default configuration file for the expected size of the database (small, medium, large, huge)

cp support-files/my-medium.cnf /etc/my.cnf
chown root:sys /etc/my.cnf
chmod 644 /etc/my.cnf

If you get an error message about the data directory not existing, etc., something went wrong in the mysql_install_db step above. Go back and review that; make sure you didn't get some sort of error message when you ran it, etc.

Now we have to tell the system where to find some of the dynamic libraries that MySQL will need to run. We use dynamic libraries instead of static to keep the memory usage of the MySQL program itself to a minimum.

echo "/usr/local/mysql/lib/mysql" >> /etc/ld.so.conf
ldconfig

Now create a startup script, which enables MySQL auto-start each time your server is restarted.

cp ./support-files/mysql.server /etc/rc.d/init.d/mysql
chmod +x /etc/rc.d/init.d/mysql
/sbin/chkconfig --level 3 mysql on

Then set up symlinks for all the MySQL binaries, so they can be run from anyplace without having to include/specify long paths, etc.

cd /usr/local/mysql/bin
for file in *; do ln -s /usr/local/mysql/bin/$file /usr/bin/$file; done

MySQL Security Issues

First, we will assume that only applications on the same server will be allowed to access the database (i.e., not a program running on a physically separate server). So we'll tell MySQL not to even listen on port 3306 for TCP connections like it does by default.

Edit /etc/my.cnf and uncomment the

skip-networking

line (delete the leading #).

For more security info, check out this MySQL security tutorial.

Start MySQL

First, test the linked copy of the startup script in the normal server runlevel start directory, to make sure the symlink was properly set up:

cd ~
/etc/rc.d/rc3.d/S90mysql start

If you ever want to manually start or stop the MySQL server, use these commands:

/etc/rc.d/init.d/mysql start
/etc/rc.d/init.d/mysql stop

Let's "test" the install to see what version of MySQL we're running now:

mysqladmin version

It should answer back with the version we've just installed...

Now we'll set a password for the MySQL root user (note that the MySQL root user is not the same as the system root user, and definitely should not have the same password as the system root user!).

mysqladmin -u root password new-password

(obviously, insert your own password in the above command instead of the "new-password" string!)

You're done! MySQL is now installed and running on your server. It is highly recommended that you read about MySQL security and lock down your server as much as possible. The MySQL site has info at http://www.mysql.com/doc/en/Privilege_system.html.

Test MySQL

To run a quick test, use the command line program mysql:

mysql -u root -p

and enter your new root user password when prompted. You will then see the MySQL prompt:

mysql>

First, while we're in here, we'll take care of another security issue and delete the sample database test and all default accounts except for the MySQL root user. Enter each of these lines at the mysql> prompt:

drop database test;
use mysql;
delete from db;
delete from user where not (host="localhost" and user="root");
flush privileges;

As another security measure, I like to change the MySQL administrator account name from root to something harder to guess. This will make it that much harder for someone who gains shell access to your server to take control of MySQL.

MAKE SURE YOU REMEMBER THIS NEW NAME, AND USE IT WHEREVER
YOU SEE "root" IN OTHER DIRECTIONS, WEBSITES, ETC.

ONCE YOU DO THIS STEP, THE USERNAME "root" WILL CEASE TO
EXIST IN YOUR MYSQL CONFIGURATION!

update user set user="sqladmin" where user="root";
flush privileges;

Now, on with the "standard" testing... First, create a new database:

create database foo;

You should see the result:

Query OK, 1 row affected (0.04 sec)

mysql>

Delete the database:

drop database foo;

You should see the result:

Query OK, 0 rows affected (0.06 sec)

mysql>

To exit from mysql enter \q:

\q

Install OpenSSL

cd /usr/local/src/openssl-0.9.8a

./config \
--prefix=/usr/local/openssl \
-fPIC

make && make test && make install

Patch Apache with mod_ssl

cd ../mod_ssl-2.8.28-1.3.37

make clean

./configure \
--with-apache=../apache_1.3.37 \
--with-ssl=../openssl-0.9.8a

Patch Apache with mod_perl

cd ../mod_perl-1.29

perl Makefile.PL \
EVERYTHING=1 \
APACHE_SRC=../apache_1.3.37/src \
USE_APACI=1 \
PREP_HTTPD=1 \
DO_HTTPD=1

make && make install

Build Apache

cd ../apache_1.3.37

make clean

CFLAGS='-DEAPI' \
SSL_BASE=../openssl-0.9.8a \
./configure \
--prefix=/usr/local/apache \
--enable-module=ssl \
--enable-shared=ssl \
--enable-module=rewrite \
--enable-shared=max \
--enable-module=so \
--activate-module=src/modules/perl/libperl.a \
--enable-module=perl

make
make certificate TYPE=custom
make install

Note that if you encrypt the certificate keys during the make certificate step, you will be required to enter the password each time you start the Apache server.

Build and Install PHP with SSL Support

This section has only been tested with PHP v4.x. If you are trying to build PHP 5.x, I do not have experience with this yet, and do not provide free support for you to get it working. Please note that there are many options which can be selected when compiling PHP. Some will have library dependencies, meaning certain software may need to be already installed on your server before you start building PHP. You can use the command

./configure --help | less

once you change into the PHP source directory. This will show you a list of all possible configuration switches. For more information on what these switches are, please check the PHP website documentation.

cd /usr/local/src/php-4.4.6

make clean

CFLAGS='-O2 -I/usr/local/src/openssl-0.9.8a -DEAPI' \
./configure \
--with-apxs=/usr/local/apache/bin/apxs \
--disable-debug \
--enable-ftp \
--enable-inline-optimization \
--enable-magic-quotes \
--enable-mbstring \
--enable-mm=shared \
--enable-safe-mode \
--enable-track-vars \
--enable-trans-sid \
--enable-wddx=shared \
--enable-xml \
--with-dom \
--with-gd \
--with-gettext \
--with-mysql=/usr/local/mysql \
--with-regex=system \
--with-xml \
--with-zlib-dir=/usr/lib

make && make install

cp php.ini-dist /usr/local/lib/php.ini

I like to keep my config files all together in /etc. I set up a symbolic link like this:

ln -s /usr/local/lib/php.ini /etc/php.ini

Then I can just open /etc/php.ini in my editor to make changes.

Edit the Apache Configuration File (httpd.conf)

I like to keep all my configuration files together in /etc, so I set up a symbolic link from the actual location to /etc:

ln -s /usr/local/apache/conf/httpd.conf /etc/httpd.conf

Now open /etc/httpd.conf in your favorite text editor, and set all the basic Apache options in accordance with the official Apache instructions (beyond the scope of this HOWTO).

Also recommended is the article on securing Apache.

To ensure your PHP files are properly interpreted, and not just downloaded as text files, remove the # at the beginning of the lines which read:

#AddType application/x-httpd-php .php
#AddType application/x-httpd-php-source .phps

If the AddType lines above don't exist, manually enter them (without the leading # of course) after the line

AddType application/x-tar .tgz

or anyplace within the <IfModule mod_mime.c> section of httpd.conf.

If you wish to use other/additional extensions/filetypes for your PHP scripts instead of just .php, add them to the AddType directive:

AddType application/x-httpd-php .php .foo
AddType application/x-httpd-php-source .phps .phtmls

An example: if you wanted every single HTML page to be parsed and processed like a PHP script, just add .htm and .html:

AddType application/x-httpd-php .php .htm .html

There will be a bit of a performance loss if every single HTML page is being checked for PHP code even if it doesn't contain any. But if you want to use PHP but be "stealthy" about it, you can use this trick.

Add index.php to the list of valid Directory Index files so that your "default page" in a directory can be named index.php.

<IfModule mod_dir.c>
    DirectoryIndex index.php index.htm index.html
</IfModule>

You can add anything else you want here too. If you want foobar.baz to be a valid directory index page, just add the .baz filetype to the AddType line, and add foobar.baz to the DirectoryIndex line.

Start Apache with SSL enabled

First, we want to set Apache up with a normal start/stop script in /etc/rc.d/init.d so it can be auto-started and controlled like other system daemons. Set up a symbolic link for the apachectl utility (installed automatically as part of Apache):

ln -s /usr/local/apache/bin/apachectl /etc/rc.d/init.d/apache

Then set up auto-start for runlevel 3 (where the server will go by default):

ln -s /etc/rc.d/init.d/apache /etc/rc.d/rc3.d/S90apache

Then start the daemon:

/etc/rc.d/init.d/apache startssl

If you ever want to start Apache without SSL enabled, just do

/etc/rc.d/init.d/apache start

The "start" option is what Apache will use by default when auto-starting at server boot. In order to start SSL by default, you will need to edit /usr/local/apache/bin/apachectl and make the "startssl" command just "start" (make the original "start" something like "startnossl"). Remember to update the usage info as well!

Change this section:

case $ARG in
start)
if [ $RUNNING -eq 1 ]; then
echo "$0 $ARG: httpd (pid $PID) already running"
continue
fi
if $HTTPD ; then
echo "$0 $ARG: httpd started"
else
echo "$0 $ARG: httpd could not be started"
ERROR=3
fi
;;
startssl|sslstart|start-SSL)
if [ $RUNNING -eq 1 ]; then
echo "$0 $ARG: httpd (pid $PID) already running"
continue
fi
if $HTTPD -DSSL; then
echo "$0 $ARG: httpd started"
else
echo "$0 $ARG: httpd could not be started"
ERROR=3
fi
;;

to something like this:

case $ARG in
startnossl)
if [ $RUNNING -eq 1 ]; then
echo "$0 $ARG: httpd (pid $PID) already running"
continue
fi
if $HTTPD ; then
echo "$0 $ARG: httpd started"
else
echo "$0 $ARG: httpd could not be started"
ERROR=3
fi
;;
start|startssl|sslstart|start-SSL)
if [ $RUNNING -eq 1 ]; then
echo "$0 $ARG: httpd (pid $PID) already running"
continue
fi
if $HTTPD -DSSL; then
echo "$0 $ARG: httpd started"
else
echo "$0 $ARG: httpd could not be started"
ERROR=3
fi
;;

Then, to update the usage info, change

echo "usage: $0 (start|stop|...)"
cat << EOF

start - start httpd
startssl - start httpd with SSL enabled
stop - stop httpd

to

echo "usage: $0 (start|startnossl|stop|...)"
cat << EOF

startnossl - start httpd without SSL enabled
start - start httpd with SSL enabled
startssl - start httpd with SSL enabled
stop - stop httpd

You can check that Apache is running properly by doing:

ps -ef

and look for the httpd processes.